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Abstract. The adiabatic potential of an arbitrary polycentre systemn with multimode vibronic
interaction at each centre is investigated, It is shown that in the case when the extrema of
this adiabatic potential are considered, an effective Hamiltonian for the static Jahn-Teller
effect depending only on active one-centre nuclear displacements can be proposed. The
expressions for the parameters of this Hamiltonian are obtained and its symmetry properties
are elucidated.

1. Intreduction

Multicenire vibronic interactions are manifested in a wide number of systems such as
impurity Jahn-Teller centres [1], multicentre molecular clusters [2] and Jahn-Teller
crystals [3]. However, the theory of vibronic interactions in these systems is not well-
developed when compared with one-centre systems, due to some peculiarities which
arise in the multicentre case. The latter consist of a great number of electronic states
and vibrational modes of the multicentre system involved in vibronic mixing and offer
difficulties even at the stage of investigating the adiabatic potential. The only exceptions
are the cases of vibronic interactions of E®b, and T®e-type at the centres, i.e. when
one-centre electronic states are not mixed by vibrational modes [4]. In these cases each
electronic state of the multicentre system becomes a sheet of the adiabatic potential,
but the vibronic interaction is manifested only in the shift of the equilibrium points of
normal vibrations of the zeroth-order harmonic Hamiltonian [5].

In the general case, when the operators of vibronic interaction at the centres are of
non-diagonal form, the expressions for the sheets of the adiabatic potential contain
nonlinear combinations of normal coordinates of the zeroth-order harmonic Hamil-
tonian. An example of such situations are bioctahedral systems with E®e-interaction
at each centre. An approach based on the use of the one-centre nuclear coordinates
was proposed for the investigation of the adiabatic potential of molecular systems of
this type [6]. However, such an approach seems to be less adequate in the case of two
interacting Jahn-Teller impurities in the crystal. That is why in the work [7] a model
Hamiltonian for the static Jahn-Teller effect in this system was used without due sub-
stantiation. Another approach [8, 9] is based on the assumption that the displacement
fields due to the impurities are independent. Obviously, such an approximation is justi-
fied only for sufficiently distant impurities, when the effects of their interaction on the
one-centre vibronic instability generating these displacement fields, can be neglected.
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In the present paper it is shown that the problem of the investigation of the static
Jahn-Teller effect in an arbitrary polycentre system with multimode vibronic interaction
is reduced exactly to the consideration of an effective Hamiltonian depending on active
one-centre nuclear displacements only.

2. Effective Hamiltonian for static Jahn-Teller effect

Consider an arbitrary muitiatomic system with Jahn-Teller centres, which are not
supposed to be equivalent. The distortions of this system are described by normal
coordinates Q,r, , which transform as irreducible representations I' of the correspond-
ing symmetry group G. The vibronic mixing of the set of local electronic states by a
number of one-centre symmetrized nuclear displacements {g2,} which transform as
irreducible representations of the corresponding s1te-symmetry group G™ takes place
at each centre. In the following the coordinaies qg" Ry (they are also called active coordi-
nates) and Q,r, are considered to be real. In the absence of direct intercentre interaction
of electronic states the Hamiltonian of the static Jahn-Teller effect can be written as
follows:

H Z 2wy!‘rQuT7+Z g({Q:;lly}) (1)
ury
where @,r, are the frequences of the zeroth-order harmonic Hamiltonian of the multi-
atomic system and U " is the operator of vibronic interaction at the nth centre. The
matrix of this operator is written in the basis of the electronic states of the corresponding
centre. The eigenvalues of the operator (1) (the sheets of the adiabatic potential) can
be obtained afier the vnitary transformation:

A=s*As. (2)

Obeying the condition under which the Hamiltonian (1) was written, i.e. when the
commutation of the electronic operators of different centres takes place, the operator
of the unitary transformation takes the form [10]:

S=8"{{ 1 NesP{eZhe. .. (3)

where S™({g\2,}) is the matrix of the unitary transformation which diagonalizes the
operator of vibronic interaction of the #th centre. These matrices are known for most
vibronic problems [4]. Fulfilling the transformations (2), (3) we obtain the following
expression for the sheets of the adiabatic potential:

Uamz ; 2 m.ur'rQFr? + Z 3(")({95;1)"7} ) (4)
rly

where the index ¢, numbers the eigenvalues of the operator of vibronic interaction at
the nth centre. To find the extrema of the sheets of the adiabatic potential it is necessary
to express & in terms of Q,r, using the expansion

foﬂ,;_ Z af;?;z(ﬂr'l")gprv (5)

and to solve the corresponding extrema equations. However, as was mentioned above,
the eigenvalues £5 are complicated functions of Q,r, when the operators of vibronic
interaction at the centres have a non-diagonal form. In this case the corresponding
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extrema equations become practically unsolvable for systems with a large number of

vibrational modes.

The above complication can be avoided if we search the extrema in the space of
both the coordinates Q,r, and q . Due to the coupling conditions imposed on these
coordinates by the equations (5) the following functional must be considered:

Foo. = Uz .+ X lf;{z,,( L",z,-,— 2 aL"ﬁT(#T?)Qpry) (6)
n aly
where A% are the Lagrange multipliers [11]. The extrema equations in this case take

the following form:

OF 4 az...
S o Qury = Y Y AL @ (uTy) = 0]
80ury n EE¥
()] ()
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Oyt 945t
L”I’-,,— Z af (1T Y)Qur, =0

r

Multiplying the first equation from (7) by a(") Sul ¥)/@:r and fulfilling the summation
over uI'y we have, after using the third equatlon from (7), the expression:

= T MR, ®

fr ATy
W T

where the following notation is introduced

22 )
gty _ v ,,"p,,(nl‘r)aﬁr,,(ul"?)
i uly w#l'

*

The matrix { is Hermitian and depends on the elastic parameters of the multiatomic
system only. Using the inverse matrix ¢! (in the following denoted by ) which is
Hermitian too, the Lagrange multipliers can be expressed from (8):

{n) — mxf‘r ()
A’pf‘y— Z J{nﬂ g Bpteg - (0
L

Substituting the expression (10) into the second equation from (7) we obtain

e ({d2,)) .
n ary naTy (")
2T L K arrders
af'y wpry

.=0. (11)

So we have reduced the system of extrema equations for the sheet U,,q,. .. to a limited
number of equations depending on active invibronic interaction one-centre symmetrized
displacements only Solving the system of equations (11), the equilibrium values of
these coordinates in the extrema points q""” are obtained. Substituting these values
into (10) and then into the first equation from (7) we obtain the expression for the
equilibrium values of all nuclear coordinates in the extrema points:

0= L R uTy) T A, (12)
HT mial7 wag Ty
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Finally the energies of stabilization in the extrema points can be obtained after substitut-
ing (12) into (4):

=1 rATF ) () () [ (WY
Vaor=3 5 K i plyry nnr?'+zgu ({gr7 })- (13)
nﬁl"
waT'y

As follows from expressions (12) and (13), the extrema of the adiabatic potential are
completely determined by equilibrium values of active one-centre displacements. The
expression (13) can be treated as the sheets of an effective adiabatic potential, Indeed
when replacing the equilibrium values in (13) by the corresponding variables, the expres-
sions (11) can be considered as extrema equations for this effective adiabatic potential.
Making a unitary transformation inverse to (2), the effective Hamiltonian for the static
Jahn-Teller effect in polycentre vibronic systems is obtained:

=i 3 A oty ity Tty + E OB (14)
n'ﬁ'f“'?‘

This Hamiltonjan is equivalent to that given by expression (1) when the extrema of
adiabatic potential are considered, but depends on active one-centre nuclear displace-
ments only. It does not mean, however, that only these one-centre displacements are
different from zero in the extrema points. Some non-active one-centre nuclear displace-
ments 457, are also different from zero. Indeed, expressing them through normal
coordinates

‘?f;r)‘y_ ¥ a0 (1T 7)Qury (15)
Ty

and using {12) we obtain
¢ :gf: ‘%& gl KAL) (16)
nal y

r Tylaty
a ng ?n’ﬂ'f" AETPAFTY

where the matrix ¢ has the form:

(n ") {n)
6”’?]‘? Z ,ul"?(u r?)aﬂ[‘?(ur?) i
"Ry uTy f"pl'

(17

So £ has the same form as ¢ but is determined on the basis of both active and non-
active one-centre nuclear displacements.

3. Properties of the force constants matrix ¢~

The Hamiltonian (14), as well as (1), is an invariant of the symmetry group G. The
matrix { is an inverse one for the force constants matrix X and, therefore, have the
same symmetry properties. So, if any elements of the matrix { are equal to zero from
symmetry reasons, the same matrix elements in %" will be also equal to zero. The
symmefry properties of the matrices % and { are established below.

Consider an arbitrary matrix element of . The expansion coefficients af} (uI'y)
contained in the matrix element (9) obviously will be different from zero onfy if Tel’
when the reduction of group G—G'™ takes place. The normal coordinates of the multi-
atomic system Q,,r, can be classified using irreducible representations I" of the symmetry
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group of the nth centre. Because G™ is a subgroup of G we can generally expect the
following reduction of the representations:

& _
r=)al; (18)
:

where 7, is the number of repeating representation T;. Each set of normal coordinates
{Q,r,} with fixed # and I can be transformed into another set of normal coordinates
{@™_ (uT")} which forms a basis of the irreducible representation of the group G™:

My
Gk (1T =Y (CP D)™ Qury (19)

where C(uT") is a unitary matrix and the superscript ® on both sides of equation
(19) indicates the centre under consideration. Obviously, the irreducible representations
I' from (19) can be only those contained in (18) and the corresponding index /i, takes
the values 1<I; <A, for a given I.

The one-centre nuclear coordinates q‘;]-l? can now be decomposed using a new set
of normal coordinates (19):

ng”]g-f = Z Z &:i"%?(ﬁ l.ur) g?r,;(ﬂr) (20)
2t i

where &ji"l-lﬁ(ﬁ yuI") are new expansion coefficients. Substituting (19) into (20) we obtain
for the expansion coefficients a'2_(uI'y) the following expression:

ATy
a3 (uTY) =Y, a5 (BT N C WD @n
it

Using (21) the following relations are found:
T afl (uTy)agt, (uTy)f(@,r)

ury
=Y ¥ & (@u)alk(mul)f(o0) TCH U )) (C er)e=”
ul Az ¥
=8iwdy T, 4R, HTa, f(@ur) 22)
ul'y

where the orthogonality of the coefficients of the unitary transformation (19) has been
used and f(@,y )} is an arbitrary function of @,r. Thus the one-centre matrix elements

of { and ¢ are diagonal after both the irreducible representation and row indices.
The same symmetry properties can be established for an expression of type (19)
written for two different centres # and #'. The selection rules for the matrix elements
of { and " are determined in this case by the pair symmetry of these centres. Consider
first a system consisting of two centres only. In this case the pair symmetry group
coincides with the group G and the equality G = G obviously takes place. Therefore
the local symmetrized nuclear displacements at the centre qg’ll.}_, and ‘1::127 can always be
chosen in such a way as to transform identically under the symmetry operations of the
group G. In this case the effective elastic Hamiltonian in (14) will contain as invariants
of the group G only such bilinear terms of symmetrized nuclear displacements of differ-
ent centres which are diagonal after the indices I' and 7. In accordance with the symme-
try equivalence of matrices ¥ and { mentioned above, the corresponding matrix
elements will be different from zero also in the matrix {. When a multicentre system is
considered, the pair symmetry of two arbitrary centres is generally a subgroup of G.
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The selection rules are the same as in the two-centre case if the symmetrized displace-
ments are classified after the irreducible representations of the subgroup G of the site
symmetry group G of the corresponding centre, This subgroup includes those symme-
try operations of the group G™ which do not affect the position of the pair axis.

The established symmetry properties of the matrices £ and " allow one to reduce
substantially the number of independent matrix element. Consider, as an exampie, a
system of two impurities in the rock salt lattice. A single impurity has the site symmetry
group Oy. Let us suppose that this impurity forms a vibronic centre with the active
one-centre displacements of type E,. In the case of two such impurities, the site symme-
try groups G and the symmetry group G are determined by their mutual position.
We consider below three situations when the impurity centres are on the three-, four-
and two-fold symmetry axis of the crystal. The local active displacements of the different
centres pass into each other under reflection relative to the plane perpendicular to the
axis connecting these centres. As can be seen from table 1 the matrices § and X~ contain
two independent parameters in the case of three-fold symmetry axis and four in the
other two cases.

Table 1. Force constants for two-centre impurity systems in the rock salt lattice.

Pair axis (i1} {100} (110)
Pair symmetry group G Dia Dy Dy,
Site symmetry group G Ciu Cis G
Reduction of the representation E,
in the G* group E A+ B,
Non-zero elements of the matrix ¢ (1B =¢1F={38 ==,
2&‘"“;’0 {g{”gza, "';BI
GE=GR=0iF Ga=0t=tun
=LE=h =0 =Lan
Non-zero elements of the matrix #°  X"£ =45 = {5 H A= AT 51-~¢"'—'1—-
g-i: - CAMl
= .}fzzg'= éazgjgz ‘x‘ilgll =3 25' == Eacz
[ 1 "B
A=A = Al A= =
':.»ﬂ ga‘pl‘
. 4 K== Oma
1% Cﬁ— f ! ;3l - Citﬂl

As follows from (9), the elements of the matrix { (and of the matrix " as well)
become available if the expansion coefficients (5) and the frequencies of the zeroth-
order vibrations are known. The latter imply a knowledge of the normal coordinates,
i.e. the solution of the corresponding vibrational problem. In the case of a crystal-type
system the matrix ¢ can be found in another way. To obtain the expansion coefficients,
first we must express the one-centre active coordinates q“" through the displacements
of the atoms from the vicinity of the corresponding centre

1"1 Y Caryln—1, x, @)xcal(n) (23)

e
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where x,q(#') is the Cartesian displacement of the atom of type « at the unit celi a’ of
the crystal, @ denotes the Cartesian axis. If the one-centre vibronic mixing involves
localized electronic states of a given centre, the active nuclear coordinates contain the
displacements of the corresponding nearest neighbour atoms. Thus only a few terms
are contained in the sum (23). The atomic displacements are further expressed through
normal coordinates, i.e. the phonon coordinates Oy, as follows [12]:

I M .
n=-—=—23% & exp(ikn 24

xl’ﬂt( ) Jm zkv_‘j ﬂ(.f )ij p( ) ( )
where k and j denote the momentum and the branch of the phonon, M, is the mass
of the x atom, N is the pumber of the unit cells in the crystal, and e,m(_‘,? } denotes the
polarization vector. The phonon coordinates from (24) are complex and obey the
relation Q= Q%,;. Substituting (24) into (23) and using equation (5), the expansion
coefficients ag“l—’_?(kj), i.e. the Van Vleck coefficients [13], are obtained. The expression
(9) takes the form:

¢t~y agry ) 3t (ki)

O r

=% L % Carp(n =1 &', @) Carg(n—m, £, )Granplm—1) (25)

im x'c aff

2
Ay

where Gy, «p(n) are static lattice Green functions [14, 12]:

k
Geeyrptm—y=rs 5 DA o), (26)

N &F \fM,;‘Mx G)i-f
These Green functions were found for a number of crystals both from calculations
[14, 15] and from neutron scattering measurements [16-19]. Thus the matrix { can be
obtained for these crysials avoiding the solution of a complicated phonon problem.

The eguation {25) is correct, strictly speaking, only for a system with translational
symmetry. So the multicentre vibronic system must form a Jahn-Teller crystal. Concern-
ing an impurity system, the zeroth-order phonon Hamiltonian can be used only if the
defects of mass and force constants induced by the impurities in the regular lattice can
be neglected . When this approximation is not justified the impurity effects on the force
constants matrix ) are to be taken into account, which is simplet to do within the
Green functions formalism [12].

It is generally known that the one-centre elastic force constants are usually much
greater than the intercentre elastic interactions. The latter change markedly with the
varjiations of the intercentre distance [20]. For two distant centres this interaction
changes as R, where R is the intercentre distance [20, 21}. The same behaviour is
expected for intercentre matrix elements of { and #". The relationship between one-
centre and intercentre matrix elements determines the type of equilibrium nuclear con-
figuration of the multicenire system [6], which can thus change with the variation of
the intercentre distances.

After the determination of the matrix ¢ the investigation of the extrema of the
adiabatic potential using equation (11) becomes equivalent to the corresponding
molecular problem. So the three sitnations considered in table 1 (with the arbitrary
intercentre distances) are equivalent to face-, corner- and edge-shared bioctahedra,
respectively. The adiabatic potential of these systems with the vibronic interaction of
E@e type at the centres was investigated earlier {6]. The only difference between the
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impurity system and the corresponding molecular one is contained in the matrix
elements of £.

4, Concluding remarks

To conclude, the investigation of the extrema of the adiabatic potential of an arbitrary
multicentre and multimode vibronic system can be reduced exactly to the investigation
of an effective adiabatic potential in the space of active one-centre displacements only.
In the case of a few centres this problem becomes a molecular one.

The non-Jahn-Teller distortions are different from zero fogether with the Jahn-
Teller ones in the extrema points of the adiabatic potential of multicentre system as
shown by expression (16). This expression also indicates that the non-active nuclear
displacements of a given vibronic centre are induced in the main by the active one-
centre displacements of the neighbour centres. Indeed, the corresponding contributions
in (16) are lingar in the non-diagonal matrix element of {. The direct effect of the active
one-centre displacements on non-active displacements of the same centre cannot take
place due to symmetry reasons {19). It can be manifested indirectly at higher order in
non-diagonal elements of { and .

In the absence of intercentre elastic interaction the effective elastic Hamiltonian in
(14) contains only one parameter {~'. The latter corresponds exactly to the parameter
oy’ (formulae 3.5.33 from [22]), which appears in the expressions for the adiabatic
poiential of the one-centre multimode Jahn-Teller effect.

The effective vibronic Hamiltonian was derived above without detailing the zeroth-
order vibrations of the multiatomic system. However, special attention must be paid
to the case of crystal vibrations including the interaction with the free surface, which
is important, for example in crystals with finite dimensions. The sarne is true for the
interactions with the bulk deformation of the crystal. Formally these effects can be
included in the frame of the above approach, anologously to other vibrations, if they can
be presenied as interactions with independent vibrational degrees of freedom. However,
complications can arise because, for example, uniform deformations of the crystal
cannot be simply treated as vibrational degrees of freedom [23, 24]. We shall discuss
this point more thoroughly in another paper.

The theory developed will be useful to rationalize experimental data concerning
multicentre systems where intercentre correlation of one-centre Jahn-Teller distortions
are important. Besides cooperative Jahn-Teller systesin [3, 24] and polynuclear molecu-
lar clusters [2], multicentre vibronic interactions are manifested in systems of substitu-
tion impurities in crystals with high symmetry lattice. Examples of such kind are EPR
evidence of Cu?* ion pairs in single crystals CaO {25], CsMgCl; [26], Zn(pyO)s(Cl04)*
[27]. Apart from substitution impurities there are also complex colour centres (M, R
and others) in alkali halides and multiple defects of N in diamond (see, for examples
[28] and references therein) which would be objects for application of the above theory.
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