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Effective Hamiltonian for multimode static J b T e l I e r  effect 
in polycentre vibrolnic systems 
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Instihltc of Chemistry of the Academy of Sciences of Moldova. Acadaniei str. 3, 
277028 Kishinev, Moldova 

Received 25 March 1994. in final form IS July 1994 

Absbret. The adiabatic potential of an arbitrary polycentre system with multimode vihronic 
interaction at each centre is investigated. It is shown that in the case when the extrema of 
this adiabatic potential are considered, an dfective Hamiltonian for the static Jab-Teller 
effect depending only on active onecentre nuclear displacements can be proposed. The 
expressions for the parameters of this Hamiltonian are obtained and its symmetry properties 
are elucidated. 

1. Introduction 

Multicentre vibronic interactions are manifested in a wide number of systems such as 
impurity Jahn-Teller centres [I] ,  multicentre molecular clusters [2] and Jahn-Teller 
crystals [3]. However, the theory of vibronic interactions in these systems is not well- 
developed when compared with one-centre systems, due to some peculiarities which 
arise in the multicentre case. The latter consist of a great number of electronic states 
and vibrational modes of the multicentre system involved in vibronic mixing and offer 
d a d t i e s  even at the stage of investigating the adiabatic potential. The only exceptions 
are the cases of vibronic interactions of E@bl and T@e-type at the centres, i.e. when 
one-centre electronic states are not mixed by vibrational modes [4]. In these cases each 
electronic state of the multicentre system becomes a sheet of the adiabatic potential, 
but the vibronic interaction is manifested only in the shift of the equilibrium points of 
normal vibrations of the zeroth-order harmonic Hamiltonian [SI. 

In the general case, when the operators of vibronic interaction at the centres are of 
nondiagonal form, the expressions for the sheets of the adiabatic potential contain 
nonlinear combinations of normal coordinates of the zeroth-order harmonic Hamil- 
tonian. An example of such situations are bioctahedral systems with E@e-interaction 
at each centre. An approach based 00 the use of the one-centre nuclear coordinates 
was proposed for the investigation of the adiabatic potential of molecular systems of 
this type [6]. However, such an approach seems to be less adequate in the case of two 
interacting Jahn-Teller impurities in the crystal. That is why in the work [7l a model 
Hamiltonian for the static Jahn-Teller effect in this system was used without due sub- 
stantiation. Another approach [8,9] is based on the assumption that the displacement 
fields due to the impurities are independent. Obviously, such an approximation is justi- 
fied only for su&iently distant impurities, when the effects of their interaction on the 
one-centre vibronic instability generating these displacement fields, can be neglected. 
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In the present paper i t  is shown that the problem of the investigation of the static 
Jahn-Teller effect in an arbitrary polycentre system with multimode vibronic interaction 
is reduced exactly to the consideration of an erective Hamiltonian depending on active 
one-centre nuclear displacements only. 

2. Effective Hamiltonian for static Jabn-Teller effect 

Consider an arbitrary multiatomic system with Jahn-Teller centres, which are not 
supposed to be equivalent. The distortions of this system are described by normal 
coordinates QMry, which transform as irreducible representations r of the correspond- 
ing symmetry group G. The vibronic mixing of the set of local electronic states by a 
number of one-centre symmetrized nuclear displacements {q;'?} which transform as 
irreducible representations of the corresponding site-symmetry group G'"' takes place 
at each centre. In the following the coordinates q$, (they are also called active coordi- 
nates) and Qpry are considered to be real. In the absence of direct intercentre interaction 
of electronic states the Hamiltonian of the static Jahn-Teller effect can be written as 
follows : 

fi= C b$,Q,&,+C c%({$&}) (1) 
pry R 

where wpry are the frequences of the zeroth-order harmonic Hamiltonian of the multi- 
atomic system and Ut:b is the operator of vibronic interaction at the nth centre. The 
matrix of this operator is written in the basis of the electronic states of the corresponding 
centre. The eigenvalues of the operator ( I )  (the sheets of the adiabatic potential) can 
be obtained after the unitary transformation: 

f i=S' i iS.  (2)  
Obeying the condition under which the Hamiltonian (1) was written, i.e. when the 
commutation of the electronic operators of different centres takes place, the operator 
of the unitary transformation takes the form [IO] : 

S = s ( ' ) ( { q ~ ~ ~ } ) ~ s ( z ) ( { q ~ ~ ~ } ) ~ .  . . (3) 
where S(")({q;J7}) is the matrix of the unitary transformation which diagonalizes the 
operator of vibronic interaction of the nth centre. These matrices are known for most 
vibronic problems [4]. Fulfilling the transformations (2), (3) we obtain the following 
expression for the sheets of the adiabatic potential: 

ua,=2.,.= C f@:rrQ&y+C Eb".'(fqF;i}) (4) 
n 

where the index a, numbers the eigenvalues of the operator of vibronic interaction at 
the nth centre. To find the extrema of the sheets of the adiabatic potential it is necessary 
to express s2 in terms of QUr, using the expansion 

q$,= C $ " @ W Q P r y  ( 5 )  
pry 

and to solve the corresponding extrema equations. However, as was mentioned above, 
the eigenvalues E%) are compIicated functions of Qpry when the operators of vibronic 
interaction at the centres have a non-diagonal form. In this case the corresponding 
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extrema equations become practically unsolvable for systems with a large number of 
vibrational modes. 

The above complication can be avoided if we search the extrema in the space of 
both the coordinates Qprr and q;&. Due to the coupling conditions imposed on these 
coordinates by the equations ( 5 )  the following functional must be considered: 

where L:& are the Lagrange multipliers [ 1 I]. The extrema equations in this case take 
the followng form: 

J q;$- 1 a;$pry)Q,,ry=O 
lrrr 

Multiplying the first equation from (7) by a:&(pry)/u& and fulfilling the summation 
over p r y  we have, after using the third equation from (7), the expression: 

where the following notation is introduced 

The matrix c is Hermitian and depends on the elastic parameters of the multiatomic 
system only. Using the inverse matrix c-' (in the following denoted by X )  which is 
Hermitian too, the Lagrange multipliers can be expressed from (8): 

Substituting the expression (10) into the second equation from (7) we obtain 

So we have reduced the system of extrema equations for the sheet . to a limited 
number of equations depending on active invibronic interaction one-centre symmetrized 
displacements only. Solving the system of equations (I]) ,  the equilibrium values of 
these coordinates in the extrema points qr?: are obtained. Substituting these values 
into (IO) and then into the first equation from (7) we obtain the expression for the 
equilibrium values of all nuclear coordinates in the extrema points: 
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Finally the energies of stabilization in the extrema points can be obtained after substitut- 
ing (12) into (4): 

As follows from expressions (12) and (13), the extrema of the adiabatic potential are 
completely determined by equilibrium values of active one-centre displacements. The 
expression (13) can be treated as the sheets of an effective adiabatic potential. Indeed 
when replacing the equilibrium values in (1 3) by the corresponding variables, the expres- 
sions (11) can be considered as extrema equations for this effective adiabatic potential. 
Making a unitary transformation inverse to (2), the effective Hamiltonian for the static 
lahn-Teller effect in polycentre vibronic systems is obtained: 

This Hamiltonian is equivalent to that given by expression ( I )  when the extrema of 
adiabatic potential are considered, but depends on active one-centre nuclear displace- 
ments only. It does not mean, however, that only these one-centre displacements are 
different from zero in the extrema points. Some non-active one-centre nuclear displace- 
ments qFi9 are also different from zero. Indeed, expressing them through normal 
coordinates 

C aFA&r~)Qpry (15) 

and using (12) we obtain 

where the matrix has the form: 

So p has the same form as [ but is determined on the basis of both active and non- 
active one-centre nuclear displacements. 

3. Properties of tbe force constants matrix S 

The Hamiltonian (14), as well as ( I ) ,  is an invariant of the symmetry group G. The 
matrix [ is an inverse one for the force constants matrix X and, therefore, have the 
same symmetry properties. So, if any elements of the matrix (' are equal to zero from 
symmetry reasons, the same matrix elements in X will be also equal to zero. The 
symmetry properties of the matrices X and 5 are established below. 

Consider an arbitrary matrix element of [. The expansion coellicients a(n$9(pJy) 
contained in the matrix element (9) obviously will be different from zero on& if TsT 
when the reduction of group G-tG'"' takes place. The normal coordinates of the multi- 
atomic system Qpry can be classified using irreducible representations I: of the symmetry 
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group of the nth centre. Because G'"' is a subgroup of G we can generally expect the 
following reduction of the representations: 

where El is the number of repeating representation ri. Each set of normal coordinates 
{Qpry} with fixed p and r can be transformed into another set of normal coordinates 
{oz)rt(pr)} which forms a basis of the irreducible representation of the group G'"': 

o;if (p  l- ) = (C("'(p r))$lF7Qpry (19) 
Y 

where C(")(pr)  is a unitary matrix and.the superscript (n) on both sides of equation 
(19) indicates the centre under consideration. Obviously, the irreducible representations 
I: from (19) can be only those contained in (18) and the corresponding index p,  takes 
the values 1 Qp,  <Et for a given r. 

The one-centre nuclear coordinates qF& can now be decomposed using a new set 
of normal coordinates (19): 

Qi= ~;;$i,~r)Q;\~(~r) (20) 

a? prt ( p r y )  = C$$p,pr )(c(*)(pr )):IF?. 

p r  08 

where $&,(fi,pT) are new expansion coefficients. Substituting (19) into (20) we obtain 
for the expansion coefficients a,$?(pry) the following expression: 

(21) 
El 

Using (21) the following relations are found: 

pry 
e a;;# ry)$k& r rm,  d 

= 6~r .6 ,~  C aF&ry)apF,f(opr) (22) 
pry 

where the orthogonality of the coefficients of the unitary transformation (19) has been 
used and f ( (mpr)  is an arbitrary function of opr .  Thus the one-centre matrix elements 
of c and 3y are diagonal after both the irreducible representation and row indices. 

The same symmetry properties can be established for an expression of type (19) 
written for two different centres n and n'. The selection rules €or the matrix elements 
of c and X are determined in this case by the pair symmetry of these centres. Consider 
first a system consisting of two centres only. In this case the pair symmetry group 
coincides with the group G and the equality G'"'= G'"' obviously takes place. Therefore 
the local symmetrized nuclear displacements at the centre &, and q$!? can always be 
chosen in such a way as to transform identically under the symmetry operations of the 
group G. In this case the effective elastic Hamiltonian in (14) will contain as invariants 
of the group G only such bilinear terms of symmetrized nuclear displacements of differ- 
ent centres which are diagonal after the indices and 7. In accordance with the symme- 
try equivalence of matrices Z? and mentioned above, the corresponding matrix 
elements will be different from zero also in the matrix c. When a multicentre system is 
considered, the pair symmetry of two arbitrary centres is generally a subgroup of G. 
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The selection rules are the same as in the two-centre case if the symmetrized displace- 
ments are classified after the irreducible representations of the subgroup @") of the site 
symmetry group G'"' of the corresponding centre. This subgroup includes those symme- 
try operations of the group G'"' which do not affect the position of the pair axis. 

The established symmetry properties of the matrices c and .T allow one to reduce 
substantially the number of independent matrix element. Consider, as an example, a 
system of two impurities in the rock salt lattice. A single impurity has the site symmetry 
group Oh. Let us suppose that this impurity forms a vibronic centre with the active 
onecentre displacements of type Ex. In the case of two such impurities, the site symme- 
try groups G'") and the symmetry group G are determined by their mutual position. 
We consider below three situations when the impurity centres are on the three-, four- 
and two-fold symmetry axis of the crystal. The local active displacements of the different 
centres pass into each other under reflection relative to the plane perpendicular to the 
axis connecting these centres. As can be seen from table 1 the matrices c and X contain 
two independent parameters in the case of three-fold symmetry axis and four in the 
other two cases. 

Table 1. Force conslants for twoantre im~ur i tv  systems in the rock salt lattice. 
~ 

pair a x i s  ( 1  1 1 )  (1W (110) 

Pair symmetry group G DU D4h Dlh 
Site symmetry group GI"' C,. C,. C, 
Reduction of the representation E# 
in the G'"' group E A I + B I  
Non-zero elements of the matrix ( ( !%=dk=@ C t A ,  &A,=&, 

l A , =  U,- 

As follows from (9), the elements of the matrix F (and of the matrix .T as well) 
become available if the expansion coefficients (5) and the frequencies of the zeroth- 
order vibrations are known. The latter imply a knowledge of the normal coordinates, 
i.e. the solution of the corresponding vibrational problem. In the case of a crystal-type 
system the matrix 5 can be found in another way. To obtain the expansion coefficients, 
first we must express the one-centre active coordinates q!'? through the displacements 
of the atoms from the vicinity of the corresponding centre: 
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where xra(n') is the Cartesian displacement of the atom of type K at the unit cell n' of 
the crystal, a denotes the Cartesian axis. If the one-centre vibronic mixing involves 
localized electronic states of a given centre, the active nuclear coordinates contain the 
displacements of the corresponding nearest neighbour atoms. Thus only a few terms 
are contained in the sum (23). The atomic displacements are further expressed through 
normal coordinates, i.e. the phonon coordinates as follows [U]: 

where k and j denote the momentum and the branch of the phonon, M ,  is the mass 
of the K atom, N is the number of the unit cells in the crystal, and exa(;)  denotes the 
polarization vector. The phonon coordinates from (24) are complex and obey the 
relation Qk,=Q!kj. Substituting (24) into (23) and using equation (S), the expansion 
coefficients ag$kj), i.e. the Van Vleck coefficients [13], are obtained. The expression 
(9) takes the form: 

where G..,,xp(n) are static lattice Green functions [14, 121: 

These Green functions were found for a number of crystals both from calculations 
[14, IS] and from neutron scattering measurements [16-191. Thus the matrix C can be 
obtained for these crystals avoiding the solution of a complicated phonon problem. 

The equation (25) is correct, strictly speaking, only for a system with translational 
symmetry. So the multicentre vibronic system must form a Jahn-Teller crystal. Concern- 
ing an impurity system, the zeroth-order phonon Hamiltonian can be used only if the 
defects of mass and force constants induced by the impurities in the regular lattice can 
be neglected . When this approximation is not justified the impurity effects on the force 
constants matrix X are to be taken into account, which is simpler to do within the 
Green functions formalism [ 121. 

It is generally known that the one-centre elastic force constants are usually much 
greater than the intercentre elastic interactions. The latter change markedly with the 
variations of the intercentre distance [ZO]. For two distant centres this interaction 
changes as R-3, where R is the intercentre distance [ZO, 211. The same behaviour is 
expected for intercentre matrix elements of 5 and X .  The relationship between one- 
centre and intercentre matrix elements determines the type of equilibrium nuclear con- 
figuration of the multicentre system [6], which can thus change with the variation of 
the intercentre distances. 

After the determination of the matrix X the investigation of the extrema of the 
adiabatic potential using equation (1 1) becomes equivalent to the corresponding 
molecular problem. So the three situations considered in table 1 (with the arbitrary 
intercentre distances) are equivalent to face-, comer- and edge-shared bioctahedra, 
respectively. The adiabatic potential of these systems with the vibronic interaction of 
E@e type at the centres was investigated earlier [6]. The only difference between the 
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impurity system and the corresponding molecular one is contained in the matrix 
elements of <. 

4. Concluding remarks 

To conclude, the investigation of the extrema of the adiabatic potential of an arbitrary 
multicentre and multimode vibronic system can be reduced exactly to the investigation 
of an effective adiabatic potential in the space of active one-centre displacements only. 
In the case of a few centres this problem becomes a molecular one. 

The non-Jahn-Teller distortions are different from zero together with the Jahn- 
Teller ones in the extrema points of the adiabatic potential of multicentre system as 
shown by expression (16). This expression also indicates that the non-active nuclear 
displacements of a given vibronic centre are induced in the main by the active one- 
centre displacements of the neighbour centres. Indeed, the corresponding contributions 
in (16) are linear in the non-diagonal matrix element of 5: The direct effect of tbe active 
one-centre displacements on non-active displacements of the same centre cannot take 
place due to symmetry reasons (19). It can be manifested indirectly at higher order in 
non-diagonal elements of 5 and X .  

In the absence of intercentre elastic interaction the effective elastic Hamiltonian in 
(14) contains only one parameter c-’. The latter corresponds exactly to the parameter 
m z  (formulae 3.5.33 from [22]), which appears in the expressions for the adiabatic 
potential of the one-centre multimode Jahn-Teller effect. 

The effective vibronic Hamiltonian was derived above without detailing the zeroth- 
order vibrations of the multiatomic system. However, special attention must be paid 
to the case of crystal vibrations including the interaction with the free surface, which 
is important, for exampIe in crystaIs with finite dimensions. The same is true for the 
interactions with the bulk deformation of the crystal. Formally these effects can be 
included in the frame of the above approach, anologously to other vibrations, if they can 
be presented as interactions with independent vibrational degrees of freedom. However, 
complications can arise because, for example, uniform deformations of the crystal 
cannot be simply treated as vibrational degrees of freedom [23, 241. We shall discuss 
this point more thoroughly in another paper. 

The theory developed will be useful to rationalize experimental data conceming 
multicentre systems where intercentre correlation of one-centre Jahn-Teller distortions 
are important. Besides cooperative Jahn-Teller systesm 13,241 and polynuclear molecu- 
lar clusters 121, multicentre vibronic interactions are manifested in systems of substitu- 
tion impurities in crystals with high symmetry lattice. Examples of such kind are EPR 
evidence of Cu” ion pairs in single crystals CaO [25], CsMgCIJ [26], Zn(pyO)6(C104)2 
[27]. Apart from substitution impurities there are also complex colour centres (M, R 
and others) in alkali halides and multiple defects of N in diamond (see, for examples 
[28] and references therein) which would be objects for application of the above theory. 
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